skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashok, Nikhil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Exploring remote destinations on Earth and in space such as the Antarctic and Mars is of great significance to science and technology. Ultraviolet (UV) irradiation at those locations is usually strong due to the depletion or absence of ozone, which is often accompanied by strong visible light interference and harsh environments with extreme temperatures. Those exploration missions extensively utilize flexible and foldable membranes and shells to meet the extreme requirements on structural size and weight. Ultra‐flexible UV photodetectors (PDs) capable of surviving harsh environments with additional ability to integrate on flexible and foldable structures for in situ visible‐blind UV sensing are critical to the protection of human explorers and engineering materials. However, the development of such UV PDs remains challenging. Here, this work introduces wired and wireless optoelectronic devices based on visible‐blind, ultra‐flexible, sub‐micron nanocomposites of zinc oxide nanoparticles and single‐walled carbon nanotubes. In‐depth studies demonstrate their operation at cold and hot temperatures and low air pressure. Those PDs can employ flexible near‐field communication circuits for wireless, battery‐free data acquisition. Their ultra‐flexibility allows folding into a sharp crease and conformal integration to flexible and origami structures, bringing further opportunities for UV detection in demanding missions on Earth and in space. 
    more » « less